Tag Archives: authentication

SPF, DKIM and DMARC in Exchange Online Protection

In the previous two blog posts I’ve explained how to implement Exchange Online Protection as a message hygiene solution for your on-premises Exchange environment, both for inbound as well as outbound mail flow.

In this blog post I’ll go more into detail when configuring Exchange Online Protection

SPF, DKIM and DMARC

When Exchange Online Protection is fully up-and-running you can continue configuring SPF, DKIM and DMARC for message authentication purposes. This will make sure your email domain is much harder to spoof and receiving email systems know that the source of your email is a trusted source.

SPF

SPF has been around for years, and in my previous blog post I already mentioned the SPF record needed for use with Exchange Online Protection. If you want to read more about implementing SPF, please check my SenderID, SPF, DKIM and DMARC in Exchange 2016 – Part I blog post.

When only using Exchange Online Protection your SPF record will look like v=spf1 include:spf.protection.outlook.com -all.

DKIM

The good thing about Exchange Online Protection is that it supports DKIM signing and verification out of the box. The only thing you have to do is enable it in the Exchange Admin Center!

Logon to the Exchange (Online Protection) Admin Center, select protection in the navigation menu and click DKIM in the toolbar. When you click enable, an error message (in yellow) is shown that you need to create the appropriate DNS records first (click to enlarge).

EOP-DKIM

The error message reads (for search engine purposes):
CNAME record does not exist for this config. Please publish the following two CNAME records first.
selector1-domain-com._domainkey.tenantname.onmicrosoft.com
selector2-domain-com._domainkey.tenantname.onmicrosoft.com

The description isn’t that clear when you’re not a DKIM guru, but you need to create the following CNAME records:

Selector1._domainkey.domain.com CNAME selector1-domain-com._domainkey.tenant.onmicrosoft.com
Selector2._domainkey.domain.com CNAME selector2-domain-com._domainkey.tenant.onmicrosoft.com

When the DNS records are created you can use the MXToolbox to check if they are valid:MXToolbox-DKIM

If an email is sent from the on-premises Exchange server via Exchange Online Protection to for example Gmail, you can check the headers. If configured correctly you can see the SPF check passes, you can see the DKIM signature created by EOP and you can see the authentication results as well. It should read spf=pass and dkim=pass under Authentication Results as shown in the following screenshot (click to enlarge):

EOP-DKIM-Signed

For more information regarding DKIM and Exchange, please check my SenderID, SPF, DKIM and DMARC in Exchange 2016 – Part II blogpost.

DMARC

When DKIM and SPF are configured correctly you can create a DMARC record in public DNS. A DMARC policy will tell a receiving mail server what to do with email that does not comply with other settings. For example, if email is coming from a mail server that’s not listed in the SPF record it might well be spoofed. If the DKIM signature is missing it might be spoofed, if the DKIM signature is not valid, the message might be tempered with. If this is the case, you can define a policy that will reject such a message. The DNS record will be like this:

v=DMARC1;p=reject;sp=reject;pct=100;rua=mailto:dmarcreports@exchange2019.nl

The RUA is an email address where DMARC reports are sent to, so it’s a good thing to have such a mailbox on your Exchange server.

When sending an email from the Exchange server via EOP to Gmail when SPF, DKIM and DMARC are configured, you can see information like the following screenshot in the email headers (click to enlarge):

EOP-DKIM-Signed-DMARC

Everything is configured correctly now and spoofing is much harder to achieve for malicious users.

For more information regarding DMARC and Exchange, please check my SenderID, SPF, DKIM and DMARC in Exchange 2016 – Part III blog post.

Summary

In this blogpost I showed you how to configure SPF, DKIM and DMARC in Exchange Online Protection to prevent spoofing by malicious users.
In my next blog I’ll go more into detail about configuring the message hygiene options themselves in Exchange Online Protection.

Azure AD Connect Pass-Through Authentication

At Ignite 2017 it was announced that Pass Through Authentication (PTA) has reached General Availability (GA) so it is a fully supported scenario now.

But what is PTA? If Office 365 there are Cloud Identities, Synced Identities and Federated Identities. The first two are authenticated in Azure Active Directory, the last one is authenticated against on-premises Domain Controllers. For this to happen you need an ADFS infrastructure, consisting of multiple internal ADFS servers and multiple WAP (Windows Application Proxy) servers in the DMZ acting as ADFS proxies. Oh, and all servers need to be load balanced as well to provide redundancy and scalability.

PTA on the other hand is built on top of Azure AD Connect, and as such an interesting extension of the Synced Identities. PTA installs an agent on the Azure AD Connect server (AuthN agent) which accepts authentication requests from Azure AD and sends these to on-premises Domain Controllers. The advantage of authentication against on-premises Domain Controllers is that no passwords (or password hashes to be more precise) are stored in Azure Active Directory.

My first thought was how an authentication mechanism based on an asynchronous replication tool (Azure AD Connect synchronizes accounts every 30 minutes, and passwords within 2 minutes) ever be a reliable and safe solution. The last thing you want to happen is that you cannot authenticate to any service in the Microsoft cloud, because your Azure AD Connect server is busy doing other stuff (like automatically updating its engine for example ).

My second thought was how secure this could be. There’s no inbound connection to the Azure AD Connect server, there’s only an outbound connection on ports 80 (only used for SSL certificate revocation lists) and 443. And the communication itself should be secured as well, so…. But now that PTA is generally available more information becomes available, and things become clearer.

Authentication flow

For authentication to happen PTA uses a ‘service bus’ in Azure. The service bus is a standard Azure solution where application can store system messages in the service bus and where other applications can use these system messages. Using a service bus, you can create an asynchronous but reliable communication mechanism.

When logging to an Office 365 service the credentials are requested by Azure Active Directory, nothing new here. The credentials are encrypted and stored in the service bus. The AuthN agent on the Azure AD Connect server has a persistent connection to Azure AD and to the service bus, and retrieves the encrypted credentials from the service bus, decrypts them and presents them to the on-premises Domain Controller. The Domain Controller response (success, failure, password expired or user locked out) is returned to the AuthN agent and stored it on the service bus. Azure AD picks up this response and the user can continue working (or not of course, depending on the Domain Controller response).

image

Continue reading Azure AD Connect Pass-Through Authentication